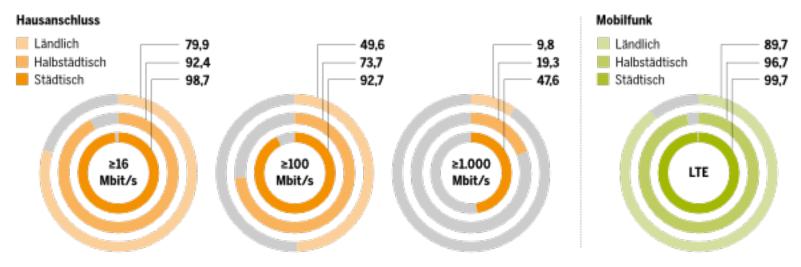
Sind wir fit für die Gigabit-Strategie

Sind schon alle W-Fragen beantwortet?

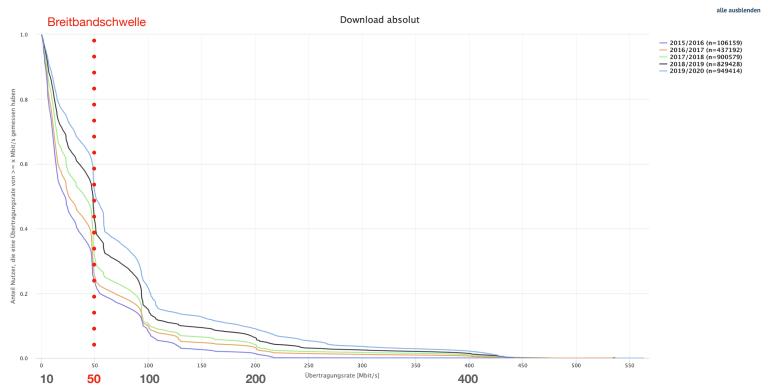
2.3.2023

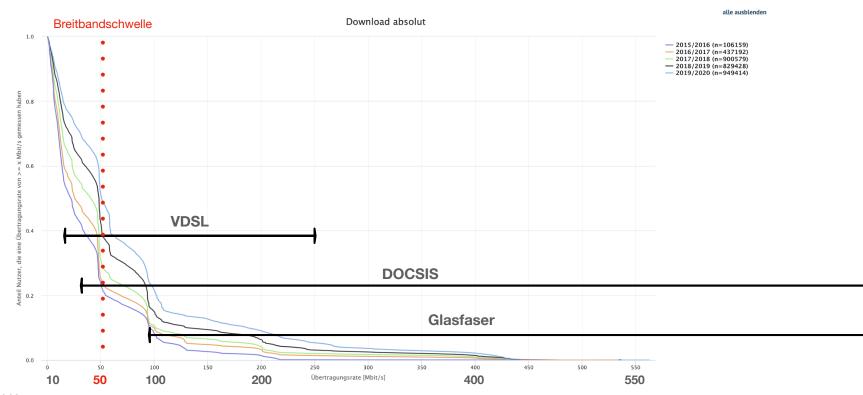

Breitband

Was ist die Definition?

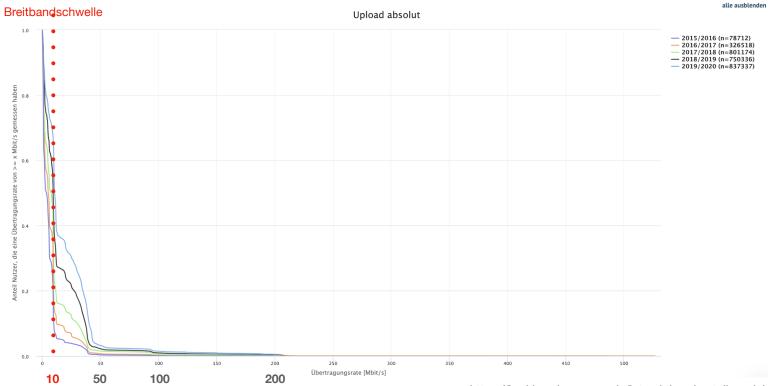
- Es existiert kein akzeptierter Schwellenwert für die Geschwindigkeit
- Die Internationale Fernmeldeunion (ITU) definiert eine Rate von >0.256Mbps!
- Tagespresse definiert einen "Breitband-Internetzugang" als ein Zugang der den "aktuellen Bedürfnissen" des Teilnehmers genügt. In 2020 waren das 50Mbps Down / 10Mbps Upstream, also vergleichbar mit einem VDSL2 Anschluss.
- Aktuelle Angebote unter 100 Euro im Monat liefern 1000/200Mbps, auf Wunsch mit festen IPv4 und IPv6 Adressen.

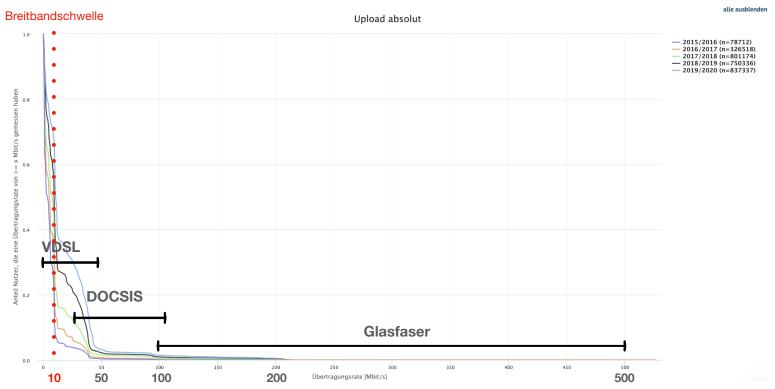
Breitband nach Region


Wo gibt es Breitband in Deutschland


Zahlen in Prozent

ACHTUNG: Zahlen von 2019 Nur Downlink Bandbreiten

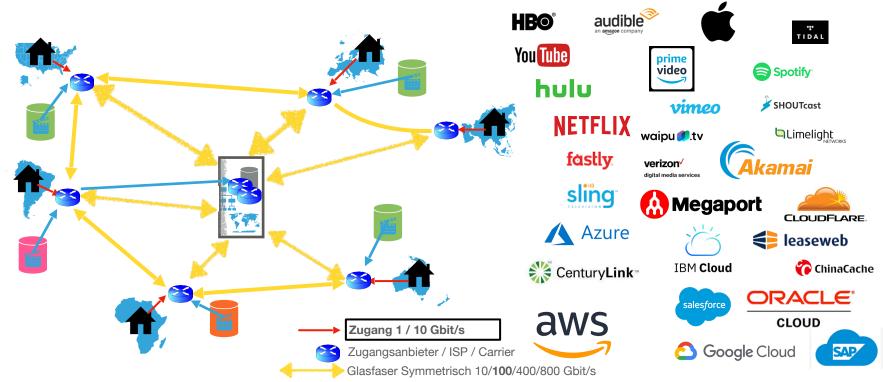

Breitbandmessung Downstream


Breitbandmessung Downstream

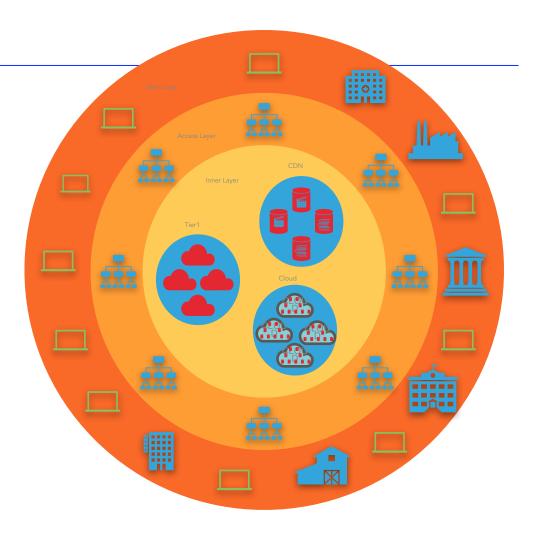
Breitbandmessung Upstream

Breitbandmessung Upstream

Datenmengen

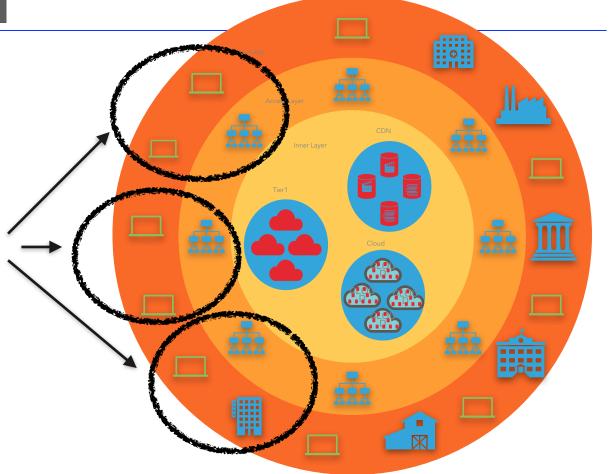

Latency and Speed Madness

- Distribution von Software
- Hochauflösendes TV (heute 4K morgen 8k)
- 3D Welten (z.B. Meta-verse)
- Remote Computing

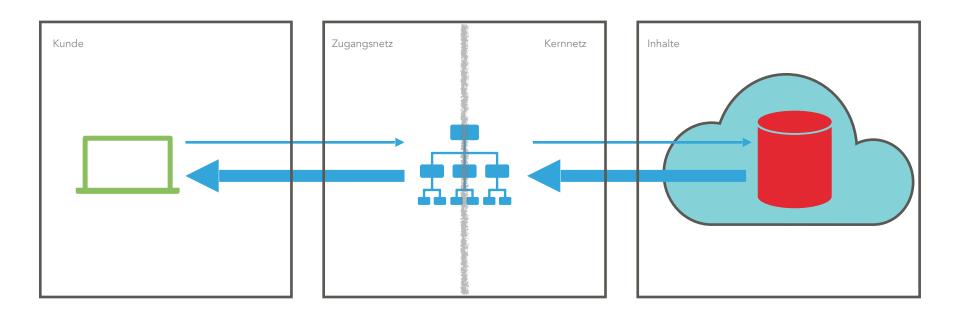

Das Internet

Cloud, CDN, Storage, Film, Musik, TV,

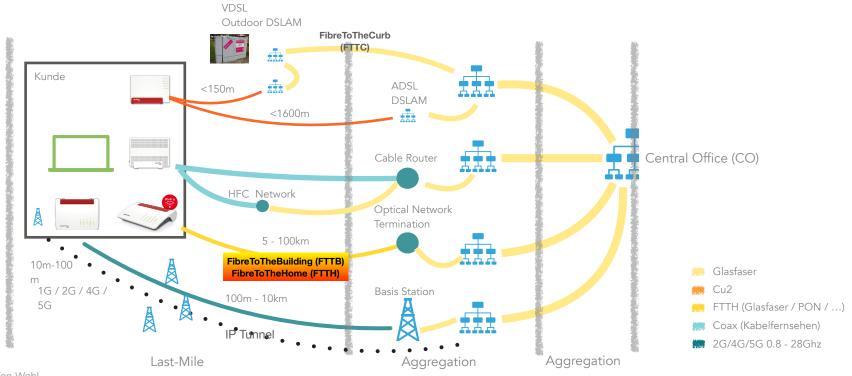
Schalenmodell


Abstraktion

Schalenmodell


Abstraktion

Zugang zum Internet für End-Kunden


Zugang zum Internet

Abstraktion (asymmetrische Nutzung)

Zugangsnetz

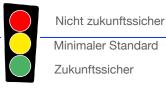
Technologien "LAST MILE"

Breitband-Initiative

Verfügbare Technologien

Name	Medium	Reichweite	Bandbreite (DOWN/UP Mbps)	Frequenz	Stromverbrauch (7) (MegaWatt)
G.Vector (VDSL2)	Kupfer Doppelader (FTTC)	<300m	250/50	0 - 35,328 Mhz	350
G.FAST	Kupfer Doppelader (FTTC)	<250m	1.000 (Summe)	0 - 212 Mhz	?
AON (P2P)	Glasfaser (FTTH)	<10.000m	100.000/100.000	1200 - 1550 nm	?
G-PON	Glasfaser (FTTH)	<16.000m	2.488/1.244 (Pro Segment)	1480 - 1500nm/ 1290 - 1330nm	154 (Pro Teilnehmer 85 W)
XGS-PON	Glasfaser (FTTH)	<16.000m	9.953/9.953 (Pro Segment)	1575 - 1580nm/ 1260 - 1280nm	154
DOCSIS3.1	Glasfaser / Coax	-	10.000/1.000	5 Mhz - 1218 Mhz	650
5G	Luft	10 - 2000m	20.000	600 Mhz - 27 Ghz	? (Pro Teilnehmer 1157,7 W)
(6G)	Luft	0.1 - ????m	100.000	600 Mhz - 300 Ghz	Weniger als 5G

Breitband-Initiative


Nicht zukunftssicher

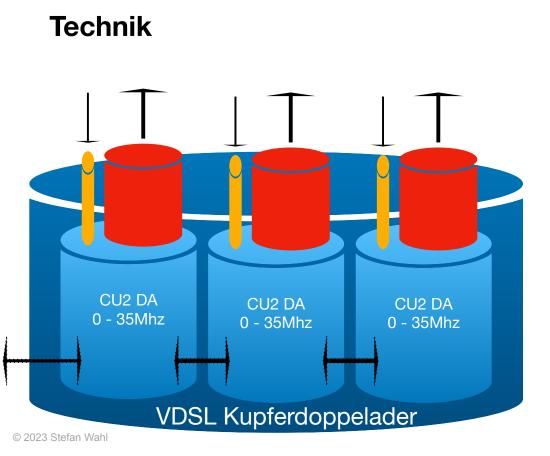
Minimaler Standard
Zukunftssicher

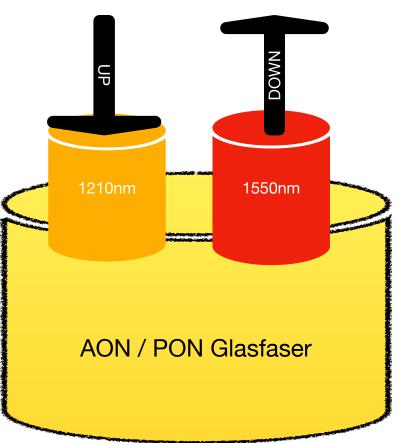
Verfügbare Technologien

Name	Medium	Reichweite	Bandbreite (DOWN/UP Mbps)	Frequenz	Stromverbrauch pro Teilnehmer
G.Vector (VDSL2)	Kupfer Doppelader (FTTC)	<300m	250/50	0 - 35,328 Mhz	350
G.FAST	Kupfer Doppelader (FTTC)	<250m	1.000 (Summe)	0 - 212 Mhz	?
AON (P2P)	Glasfaser (FTTH)	<10.000m	100.000/100.000	1200 - 1550 nm	?
G-PON	Glasfaser (FTTH)	<16.000m	2.488/1.244 (Pro Segment)	1480 - 1500nm/ 1290 - 1330nm	154 (Pro Teilnehmer 85 W)
XGS-PON	Glasfaser (FTTH)	<16.000m	9.953/9.953 (Pro Segment)	1575 - 1580nm/ 1260 - 1280nm	154
DOCSIS3.1	Glasfaser / Coax	100-10.000m	10.000/1.000	5 Mhz - 1218 Mhz	650
5G	Luft	10 - 2000m	20.000	600 Mhz - 27 Ghz	? (Pro Teilnehmer 1157,7 W)

Breitband-Initiative

Verfügbare Technologien


Name	Medium	Reichweite	Bandbreite (DOWN/UP Mbps)	Frequenz	Stromverbrauch pro Teilnehmer
G.Vector (VDSL2)	Kupfer Doppelader (FTTC)	<300m	250/50	0 - 35,328 Mhz	350
G.FAST	Kupfer Doppelader (FTTC)	<250m	1.000 (Summe)	0 - 212 Mhz	?
AON (P2P)	Glasfaser (FTTH)	<10.000m	100.000/100.000	1200 - 1550 nm	?
G-PON	Glasfaser (FTTH)	<16.000m	2.488/1.244 (Pro Segment)	1480 - 1500nm/ 1290 - 1330nm	154 (Pro Teilnehmer 85 W)
XGS-PON	Glasfaser (FTTH)	<16.000m	9.953/9.953 (Pro Segment)	1575 - 1580nm/ 1260 - 1280nm	154
DOCSIS3.1	Glasfaser / Coax	100-10.000m	10.000/1.000	5 Mhz - 1218 Mhz	650
5G	Luft	10 - 2000m	20.000	600 Mhz - 27 Ghz	? (Pro Teilnehmer 1157,7 W)


Bandbreite DOWN / UP

Was ist Symmetrische Bandbreite?

- Unterscheidung
 - Asymmetrische Bandbreite
 - UPstream << DOWNstream
 - Technische Gründe bei Kupfer Basierenden Technologien wie Mobilfunk, DSL und DOCSIS (u.a. wegen dem SNR und mögliche Störungen bei anderen Diensten)
 - Symmetrische Bandbreite
 - UPstream = DOWNstream
 - Die physische Glasfaser hat keine der obigen Beschränkungen beim Down oder Upstream
 - Das Internet arbeitet intern mit symmetrischen Bandbreiten

Kupferdoppelader v. Glasfaser

Symmetrische Bandbreite

Plädoyer

- In 2021 kam 95% des Datenverkehrs aus der Cloud.
- Datenverkehr findet immer in beiden Richtungen statt, weil Anwendungen nicht lokal betrieben werden und auch schon komplett in der Cloud ablaufen.
- Immer mehr Anwendungen speichern die Daten nicht mehr lokal und müssen diese "hochladen". Gewerbe und Privathaushalte profitieren von einer hohen Upstream Bandbreite.
- Hohe Upstream Bandbreiten reduzieren auch die Last bei den Zugangs Anbietern (Tests bei einem Glasfaser Zugangsanbieter in Norddeutschland zeigten eine bis zu 30% Verringerung des Datenverkehrs in seinem Kernnetz).

Symmetrische Bandbreite

Investition in die Zukunft

- Heutige bezahlbare Internet Zugänge sind unsymmetrisch und haben einen "langsamen" Upstream mit einem Verhältnis von bis zu 1:20 zum Downstream. Das ist optimal für das private "Klickie-Bunt-Internet" und Streaming, für andere Anwendungen und für Gewerbe eher nicht.
- Geringe Upstream Bandbreite behindert die Entwicklung neuer Arbeitsformen, Produkte und Dienstleistungen.
- Eine hohe Upstream Bandbreite kann einen Schub bei dieser Entwicklung sein. Berlin hat eine historische Chance hier ein Vorreiter zu werden!
- Jetzt ist der Zeitpunkt Berlin zur "echten" 10 Gigabit Hauptstadt zu machen und künstliche Beschränkungen der Bandbreiten im Down und Upstream zu beenden.

Glasfaser v. Kupfer

Glas

XGS-PON, G-PON, AON

versus

Kupfer

G. Vector, G. FAST, (DOCSIS)

versus

Funk

LTE, 4G, 5G, 6G

Glasfaser

Der Erfinder

"Das erste optoelektronische Lichtwellenleiter-System erfand 1965 Manfred Börner^[1]. Er entwarf ein optisches Weitverkehrs-Übertragungssystem, das Laserdioden, Glasfasern und Photodioden kombinierte. 1966 meldete er das System für das Unternehmen AEG-Telefunken zum Patent an. Alle optischen Weitverkehrs-Übertragungssysteme arbeiten noch heute nach diesem von Manfred Börner vorgeschlagenen Systemprinzip."

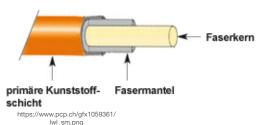
(https://de.wikipedia.org/wiki/Lichtwellenleiter)

Glasfaser

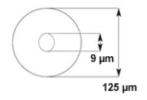
Erster Einsatz

"... bereits 1978 verband die Deutsche Bundespost die Vermittlungsstellen in der Aßmannshauser Str. (15?) und in der Uhlandstraße (85?) in Berlin-Wilmersdorf über eine etwa 4 km lange Verbindungsstrecke aus mehreren Glasfasern."

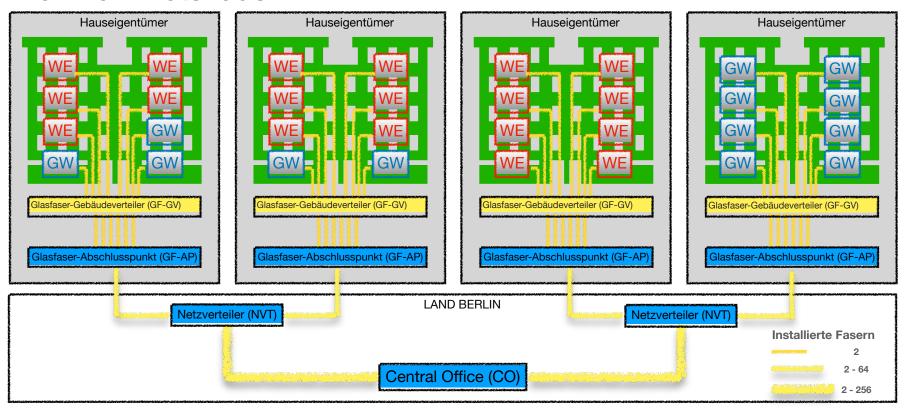
(https://de.wikipedia.org/wiki/Lichtwellenleiter)

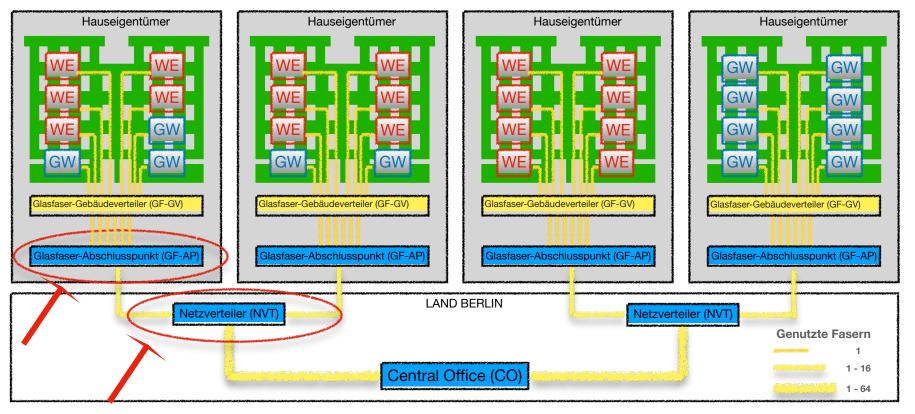

Netzausbau

Verlegung


https://wohnungswirtschaft.telekom.de/glasfaser/glasfaser-die-digitale-grundversorgung-vonimmobilien/

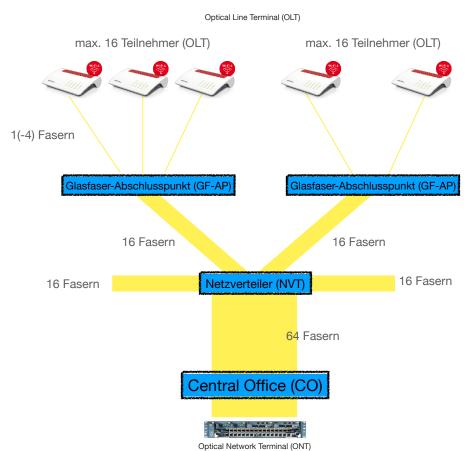
Kabelaufbau


Faserstärke


Netzausbau

Berliner Mietshaus FTTH

Netzausbau


Berliner Mietshaus FTTH

AON Technologien

Active Optical Network

- Jeder Teilnehmer:
 - Hat seinen eigenen Glasfaseranschluss zum ONT
 - Kann andere Dienste und Bandbreiten nutzen
- Maximale Flexibilität bei der **Anbieterauswahl**
- Höhere initiale Erschließungskosten

Vorteile und Nachteile

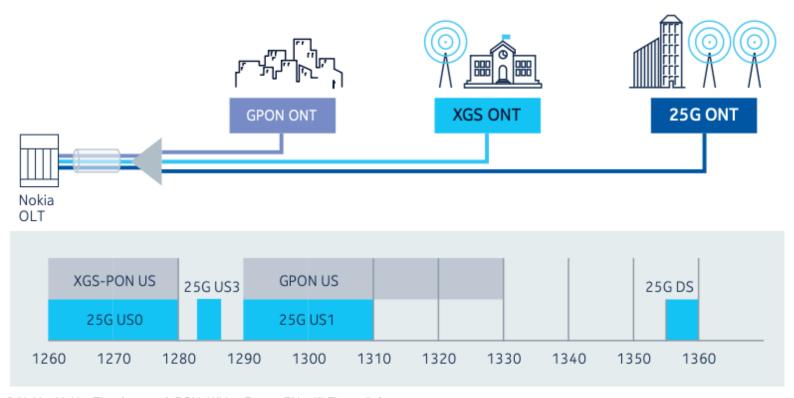
Vorteile:

- Maximale Flexibilität bei Anbietern und Diensten
- "Diskriminierungsfreier Zugriff" auf Physikalischer Ebene möglich
- Hohe Verfügbarkeit und sicher gegen Störungen
- Entfernung zum OC >= 10km
- · Zukunftssichere Symmetrische Datenübertragung
- Optimal für z.B. Gewerbegebiete und Einfamilienhäusern

Nachteile:

 Jeder Teilnehmer muss eine eigene Verbindung (P2P) zum CO haben

	APON	
Max. Linerate Downstream	1 oder 10 Gbit/s mit BiDiOptic	
Max. Linerate Upstream	1 oder 10 Gbit/s mit BiDiOptic	
Split Ratio	1:1	
Min. Downstream Bandwidth/ Subscriber	1 oder 10Gbit/s	
Min. Upstream Bandwidth/Subscriber	1 oder 10Gbit/s	


PON Technologien

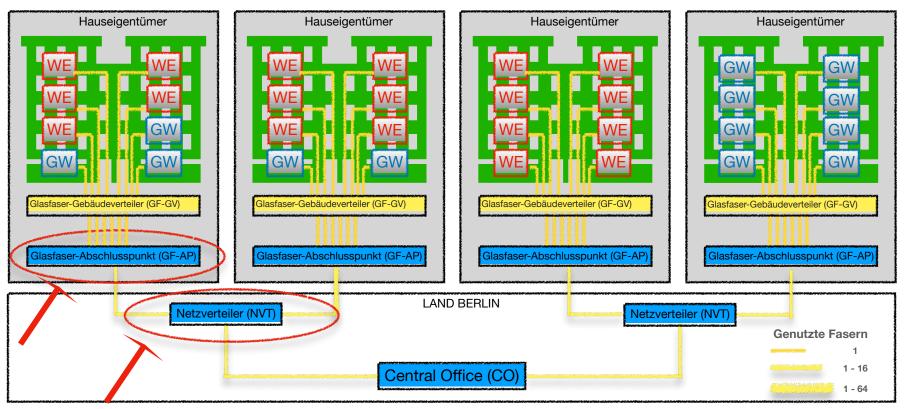
Passive Optical Network

- Standardisiert durch die ITU (https://www.itu.int) als:
 - PON, G-PON (ITU G.984)
 - XGS-PON (ITU G.987)
- Garantiert die Interoperabilität zwischen Anbietern
- Ermöglicht zukünftige Erweiterungen 25Gbit/s - 100Gbit/s PON

	G-PON	XGS-PON	25G-PON
Wavelength Downstream (1550nm SM Fenster)	1480nm-1500nm	1575nm-1580nm	1355nm-1360nm (1358nm)
Wavelength Upstream (1310nm SM Fenster)	1290nm-1330nm (1300nm)	1260nm-1280nm (1270nm)	1: 1300nm (+XGS-PON) 2: 1270nm (+GPON) 3: 1286nm
Max. Linerate Downstream	2.488 Gbit/s	9.953 Gbit/s	25 Gbit/s
Max. Linerate Upstream	1.244 Gbit/s	2.5 oder 9.953 Gbit/s	10 oder 25 Gbit/s

PON Wellenlängen

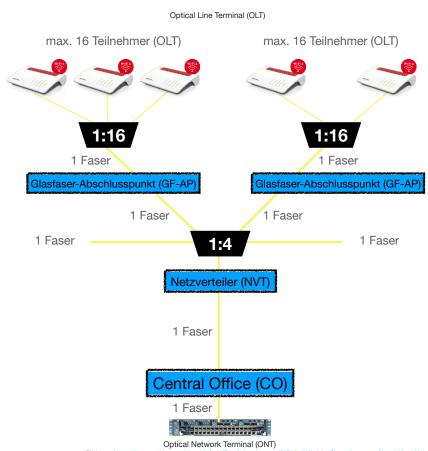
© Nokia "Nokia_The_future_of_PON_White_Paper_EN.pdf" Figure 2 8


PON Vergangenheit und Zukunft

GPON Gigabit PON	XGS-PON 10G symmetrical PON	TWDM-PON Time wavelength division multiplexing	25G PON 25G symmetrical PON	50G PON 50G asymmetrical PON
→ 2.5 Gb/s ← 1.2 Gb/s	→ 10 Gb/s ← 2.5 or 10 Gb/s	→ 4 x 10 Gb/s ← 4 x 10 Gb/s	→ 25 Gb/s ← 10 or 25 Gb/s	→ 50 Gb/s ← 12 or 25 Gb/s
One fiber feeder is split to connect multiple users. Total bandwidth is shared between all users.	Same principles as GPON, but faster. Enables dual rates: symmetrical or asymmetrical. Co-existence: GPON, 25G PON and TWDM-PON.	Uses 4 wavelength pairs (4 in upstream, 4 in downstream). Multiple users share a wavelength. Co-existence: GPON, XGS-PON and 25G PON	Same as GPON and XGS- PON but faster. Enables dual rates: symmetrical or asymmetrical. Co-existence: GPON, XGS-PON,TWDM and 50G PON.	Uses single wavelength pair. Technology leap. Asymmetrical bitrates only Co-existence: GPON or XGS-PON, 25G PON.
Deployments: Most widely deployed PON worldwide	Deployments: Accelerating worldwide	Deployments: Limited	Deployments: Emerging	Deployments: ~2030

[©] Nokia "Nokia_The_future_of_PON_White_Paper_EN.pdf" Figure 3 8

Netzausbau


Berliner Mietshaus FTTH

PON Technologien

Passive Optical Network

- Die Teilnehmer:
 - Können nur auf PON basierende Technologie nutzen
 - Teilen sich eine Glasfaser zum ONT
 - Erhalten eine Zuteilung der verfügbaren Bandbreite (ähnlich DOCSIS)
 - Uplink: Zeitschlitzverfahren (TDM)
 - Downlink: Endgeräte erhalten für sie bestimmte Daten als verschlüsselte Pakete vom ONT

PON

Vorteile und Nachteile

Vorteile:

- · Preiswerte Endgeräte (OLT) verfügbar
- Niedrige Erschließungskosten
- Hohe Verfügbarkeit und sicher gegen Störungen
- · Zukunftssichere Symmetrische Datenübertragung
- Optimal für Gewerbe und Privatpersonen in Mietgebäuden und Ein-/Mehrfamilienhäusern

Nachteile:

- Glasfaser muss bis in die Wohnung gelegt werden
- Alle Teilnehmer an einem NVt teilen sich eine Glasfaser
- Eingeschränkte Auswahl an Anbietern
- "Diskriminierungsfreier Zugriff" nur über z.B. Layer2 Bitstream Access für andere Anbieter möglich

	G-PON	XGS-PON	25G-PON
Max. Linerate Downstream	2.488 Gbit/s	9.953 Gbit/s	25 Gbit/s
Max. Linerate Upstream	1.244 Gbit/s	9.953 Gbit/s	10 ider 25 Gbit/s
Split Ratio	1:32	1:64	1:64 1:512 (30km) 1:16 (100km LR-PON)
Min. Downstream Bandwidth/ Subscriber	77 Mbit/s	155 Mbit/s	388 Mbit/s (1:64) 49 Mbit/s (1:512)
Min. Upstream Bandwidth/ Subscriber	38 Mbit/s	155 Mbit/s	388 Mbit/s (1:64) 49 Mbit/s (1:512)

(E)PON Verfügbarkeit und Preise

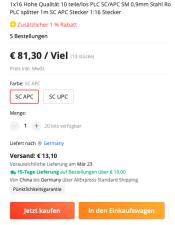
132,31€ 6 verkauft ± 5

+Versand: € 17.99

74.92€

1 verkauft 4 Port POE EPON Onu 1000M 100...

15-Tage Lieferung zum € 10 Kostenloser Versand


LuLeey Official Store

Original neue Hua wei MA5800-X2 ... +Versand: € 136.49

Nites Store

2 verkauft 100% neue GPON-OLT-Klasse C + ... Kostenloser Versand

Melonchi Store

183,56€

3 verkauft #5 20pcs 100% Neue 1G Gigabit EPO...

Kostenloser Versand

AVM FRITZ!Box 5590 Fiber (Wi-Fi 6 Glasfasermodem (WLAN AX), bis 2,400 MBit/s (5 GHz) und 1,200 MBit/s (2,4 GHz), WLAN Mesh, DECT-Basis, 2,5-Gigabit-Port, weiß, geeignet für Deutschland) 4.6 **** (455)

275.00€ UVP: 289-00€ Oder 55.00€ / Mon. für 5 Mon. (keine Gebühren oder Zinsen)

√prime KOSTENLOSE Lieferung bis Montag.

Nur noch 3 auf Lager (mehr ist unterwegs).

DOCSIS

Vorteile und Nachteile

Vorteile:

- Geringe Erschliessungskosten, weil CATV flächendeckend ausgebaut wurde
- CATV Kabel liegen schon im Haus und sind bei modernen Anlagen nutzbar (Rückkanal fähig)

· Nachteile:

- HF-Störungen durch u.a. DVB-T2 und xDSL Technologien
- Der Rückkanal muss mit HFC Netz nahe am Teilnehmer empfangen werden
- Keine Symmetrische Datenübertragung möglich
- Gemeinsam genutzte Bandbreite, mind. Bandbreiten definiert der Anbieter
- Eingeschränkte Anzahl von Anbietern
- "Diskriminierungsfreier Zugriff" nur über z.B. Bitstream Access für andere Anbieter möglich

	DOCSIS 3.1	DOCSIS 4.0
Max. Linerate Downstream	10 Gbit/s	10 Gbit/s
Max. Linerate Upstream	1 Gbit/s	6 Gbit/s
Split Ratio	?	?
Min. Downstream Bandwidth/Subscriber	30 Mbit/s	? Mbit/s
Min. Upstream Bandwidth/Subscriber	5 Mbit/s	? Mbit/s

Vorteile und Nachteile

- Vorteile:
 - · Keine Verlegung von Kabeln in Gebäuden
 - Nahtloses Roaming innerhalb des Versorgungsgebietes
- · Nachteile:
 - Hohe Kosten f
 ür Datentarife
 - Maximale Bandbreite nur in Pico- und Femto-zellen möglich
 - Hohe Antennendichte für 100% Abdeckung notwendig, wegen der kleinen Zellgrößen in der Stadt (81 Standorte im Moment)
 - Geringe Akzeptanz bei einer Minderheit der Bevölkerung wegen befürchteter Gesundheitsrisiken
 - Keine Symmetrische Datenübertragung möglich
 - Gemeinsam genutzte Bandbreite, mind. Bandbreiten definiert der Anbieter
 - Eingeschränkte Anbieterauswahl
 - KEIN "Diskriminierungsfreier Zugriff" (im Moment)

	4G+	5 G
Downstream	0.5 - 1 Gbit/s	1 - 20 Gbit/s
Upstream	0.1 Gbit/s	0.1 - 2 Gbit/s
Frequenzen	0,8 - 2,6 Ghz	0,5 - 27 (300) Ghz
Latente (RTT)	Hoch / Mittel (15 - 80 ms)	Niedrig (1 -5 ms)

Gigabit Initiative Berlin

Gigabit Berlin

Ausblicke und Chancen

- Berlin zur "echten" Gigabit Hauptstadt machen und künstliche Beschränkungen der Bandbreiten im Down und Upstream beenden
- Angebote für bezahlbare Symmetrische Bandbreiten mit festen IPv4 und IPv6 Adressen für jeden Teilnehmer
- Mit der heute verfügbaren 10Gbit/s Technik starten um zukunftssicher zu sein
- Berlin als erste Stadt flächendeckend zur TenGigabitCity ausbauen
- 5G an allen öffentlichen Orten anbieten

Gigabit-Strategie

BERLIN

Den Rahmen für den Gigabitausbau in Berlin bildet die am 15. Juni 2021 vom Berliner Senat beschlossene Gigabit-Strategie.

Die Strategie definiert als langfristiges Ziel (bis 2030) eine flächendeckende Glasfaserversorgung Berlins auf Basis von FTTB/H (Glasfaserleitung bis zum Gebäude bzw. bis zur Wohnung oder Betriebsstätte des Kunden) sowie mittelfristig (bis 2025) die Umsetzung einer vollständigen 5G-Mobilfunkversorgung.

Die Umsetzung der Gigabit-Strategie erfolgt federführend durch die Senatsverwaltung für Wirtschaft, Energie und Betriebe, die hierfür das <u>Gigabit-Kompetenz-Team</u> eingerichtet hat.

Gigabit-Strategie

Handlungsfelder

Die Gigabit-Strategie sieht sechs Handlungsfelder vor:

- Handlungsfeld I: Konkrete Investitionszusagen der TK-Wirtschaft erreichen
- Handlungsfeld II: Erleichterung des Genehmigungshandelns
- Handlungsfeld III: Rahmenbedingungen optimieren
- Handlungsfeld IV: Mobilfunkausbau unterstützen
- Handlungsfeld V: Flankierung von Fördermaßnahmen
- Handlungsfeld VI: Synergetische Nutzung von Infrastrukturen

Herausforderungen

Wo müsste geholfen werden?

Bereich	Herausforderung	Hilfe	
Hauseigentümer	Nutzungsvereinbarung (NVGG)	Vereinfachung der Rechtsgrundlage, sowie Recht des Mieters auf Gigabit?	
	Glasfaser von der WE/GW zum Glasfasergebäudeverteiler	Pflicht oder Förderung für Neubauten und bei Modernisierung?	
Land Berlin	Genehmigung für Tiefbauarbeiten	Tiefbauämter	
	Alternative Verlegemethoden erlauben (z.B. Schlitzverlegung)	Tiefbauämter	
	Flexible Auslegung des Baurechts (z.B. Beschützer Baubereich)	Denkmalschutz, Tiefbauämter,	
	5G Funkstandorte auf und in öffentlichen Gebäuden	Liegenschaftsamt,	
	Vermeidung von Überbauung	Sicherstellung fairen Wettbewerbs	

Gigabit Hauptstadt

BERLIN

- https://gigabit.berlin.de
- Definition: Gigabit = Breitband
- Stand vom 2.März 2023:
 - 97% Gigabitfähige Haushalte (WE)
 - 97% Gibabitfähige Gewerbestandorte (GW)
- Ziel bis 2025:
 - Flächendeckende Versorgung 100% !!!
- Ziel bis 2030:
 - Flächendeckende Versorgung mit FFTB/FTTH

"Gigabit-Hauptstadt Berlin" in Zahlen

Ausweislich des Gigabit-Grundbuchs der Bundesnetzagentur (Stand Dezember 2022) verfügt Berlin über eine gigabitfähige Breitbandverfügbarkeit von 97 % hei Haushalten

97

Ausweislich des Gigabit-Grundbuchs der Bundesnetzagentur (Stand Dezember 2022) verfügt Berlin über eine gigabitfähige Breitbandverfügbarkeit von 97 % bei Unternehmen.

97

Mittelfristiges Ziel des Landes Berlin ist es, bis spätestens 2025 über eine flächendeckende Gigabit-Versorgung – technologieübergreifend – zu verfügen.

2025

Langfristiges Ziel des Landes Berlin ist es, bis spätestens 2030 über eine flächendeckende Glasfaser-Versorgung auf FTTB/FTTH-Basis zu verfügen.

2030

Inhalte dieses Portals

Bid: Gigabit-Kompetenz-Team Berlin

Willkommen auf dem Gigabit-Portal

Berlin

Mehr Infos →

Bild: Gigabit-Kompetenz-Team Berlin

Breitband in Berlin

Mehr Infos →

Mein Breitbandbedarf Mehr Infos →

Gigabit Bedarfsmeldung

BERLIN

Stand 28.2.2022:

3.739 Bedarfsmeldungen

- Warum so wenig?
- Mögliche Antworten:
 - Niemand kennt das Portal?
 - Die Fragen sind zu technisch gestellt, siehe "Symmetrie"?
 - Alle sind zufrieden mit dem Status-Quo? (Goldener K\u00e4fig)

Gigabit Bedarfsmeldung

BERLIN

- Bedarfsangaben Privatanwender und Geschäftskunden https://gigabit.berlin.de/bedarf.php
 - Gewünschte Bandbreite
 - Symmetrie
 - Weiter Angaben zum gewünschten Bedarf
 - Name, Adresse und Email
 - Einwilligungserklärung
- Alle wichtigen Fragen sind gestellt!

Die nachfolgenden Informationen stammen von Init7 und aus deren Blog https://blog.init7.net/de/p2p-p2mp/

Vergleich CH und D

Der große Unterschied zwischen CH und D:

- In der Schweiz gibt es keinen regulierten Bit-Stream Access (Layer2 BSA) zu kostenorientierten Preisen.
- In Deutschland gibt es den Bit-Stream Access als diskriminierungsfreien Zugang zum Endkunden in der die BNETZA eine Funktion bei der Preisgestaltung hat. Damit soll erreicht werden, dass der Access Markt zum Vorteil des Kunden reguliert und Wettbewerb möglich ist.
- Das Schweizer Parlament hat diese Form der Regulierung 2018/2019 bei der Fernmeldegesetzrevision abgelehnt, wegen des schamlosen Lobbyings durch den lokalen Incumbent, der darauf bestanden hat, dass anderen Providern nur BBCS Vorleistungsprodukte (ähnlich Layer3 BSA) zur Verfügung gestellt werden (https://www.swisscom.ch/de/business/wholesale/angebot/anschluesse/BBCS.html). Es sollte den Politkern glauben gemacht werden, dass "dank (kommerziellem) BBCS der Wettbewerb funktioniere".

Auswirkungen in CH und D

Auswirkungen in CH und D:

- Der Schweizer Anbieter Init7 konnte wegen dieser Entscheidung beim "Glasfaserstreit" überhaupt erst so erfolgreich sein. Mangels Bit-Stream Regulierung musste der vom Gesetzgeber zwingend gewollte Telekommunikations-Wettbewerb auf der Basis des Kartellgesetzes auf dem Gerichtsweg erzwungen werden, denn Swisscom hat Anfang 2020, kaum war die Bit-Stream-Regulierung vom Tisch, den Glasfaser-Ausbau ohne Ankündigung von P2P auf P2MP geändert und so alle Stakeholder, insbesondere auch den Bundesrat (Landesregierung) hintergangen. (Vgl. Referat der ehemaligen Bundesrätin Doris Leuthard vom 27. November 2018 im Ständerat (kleine Kammer des Parlaments), ab Minute 3:11 https://www.parlament.ch/de/ratsbetrieb/amtliches-bulletin/amtliches-bulletin-die-videos?TranscriptId=237179")
- Deutsche Anbieter ohne eigenes Netz müssen sich entscheiden selber zu bauen oder Infrastruktur in der letzten Meile zum Kunden anzumieten, z.B. von der D-Telekom oder Vodafone. Die Preise für den Zugang sind so kalkuliert worden, dass eine Überbauung vorhandener Infrastruktur mit eigener Technik finanziell nur in wenigen Fällen sinnvoll ist.

Das Verfahren gegen Swisscom

Swisscom

- Glasfaser Ausbau in den Städten mit P2MP (Point-to-MultiPoint) Technologie wie PON
- P2MP Zugang nur über kommerzielles BBCS der Swisscom
- Bit-Stream Nutzung wurde untersagt in der Fernmeldegesetzrevision vom 2018/2019
- Gerichtsverfahren gegen Swisscom, Swisscom verlor in beiden Instanzen
- Geschätzte 500.000+ P2MP müssen umgebaut werden in P2P (Point-to-Point) AON Netzwerk
- Neubau nur noch als P2P
- Argumente gegen P2MP (PON)
 - PON zu AON nur 3.5% Mehrkosten in Basel
 (Weisung des Regierungsrates des Kantonsparlament Basel-Stadt)
 - PON zu AON 10% Mehrkosten auf dem Land (Studie BaWü?)
 - 3.5% sind 60 Franken, bei 30 Jahren Abschreibung, 2 Franken pro Jahr

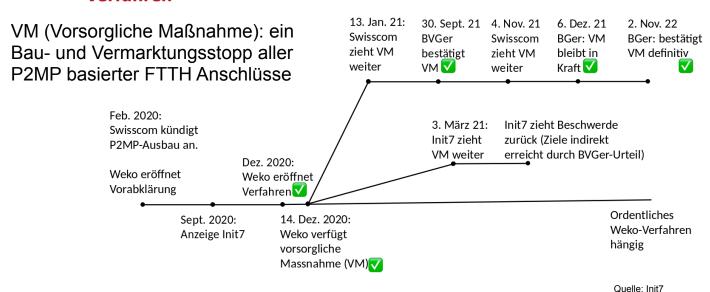
BASEL:

5305 Finwohner/km2

BERLIN:

4123 Einwohner/km2

Zeitstrahl des Glasfaserstreits



Ronzani Schlauri Anwälte Signaustrasse 11 CH-8008 Zürich

+41 44 500 57 22

schlauri@ronzani-schlauri.com

Stand der Verfahren

4

Stimmen zum Swisscom Verfahren

- Swisscom schon im Februar 2020 das PON kartellrechtlich problematisch ist und haben trotzdem mehrere 100.000 PON Anschlüsse gebaut, die sie in AON umwandeln mussten.
 Meinungsartikel dazu: https://www.inside-it.ch/meinung-swisscom-sollte-sich-erklaeren-20230210
- Journalisten sprechen in der CH bei
 - PON / P2MP vom Ein-Faser-Modell (siehe Folie PON Technologie)
 - AON / P2P vom Vier-Faser-Modell (siehe Folie AON Technologie)
 - Die Anschlüsse in den Wohneinheiten werden nach einem Glasfaser Standard gebaut, der durch die Branche am sogenannten "Runden Tisch Glasfasernetze" erarbeiteten wurde, der durch das BAKOM (Bundesamt für Kommunikation) moderiert wurde (https://www.bakom.admin.ch/bakom/de/home/das-bakom/medieninformationen/bakom-infomailing/infomailing-56/runder-tisch-zu-glasfasernetzen-vor-10-jahren-erfolgreich-beendet.html)
 - 1 Faser in P2P Netztopologie MUSS davon direkt zum CO (Central Office) geführt werden

Thank you

https://ccnull.de/fotograf/tim-reckmann

Linkliste

- 1. https://www.golem.de/news/deutsche-telekom-vectoring-jagt-den-stromverbrauch-hoch-1512-117971.html
- 2. https://europacable.eu/wp-content/uploads/2021/01/Prysmian-study-on-Energy-Consumption.pdf
- 3. https://ehtrust.org/science/reports-on-power-consumption-and-increasing-energy-use-of-wireless-systems-and-digital-ecosystem/
- 4. https://davidmytton.blog/how-much-energy-will-5g-consume
- 5. https://de.wikipedia.org/wiki/5G
- 6. https://www.5g-anbieter.info/technik/smart-cells.html
- 7. https://www.golem.de/news/megawatt-glasfaser-hat-den-geringsten-strombedarf-2205-165158.html
- 8. https://onestore.nokia.com/asset/205049?ga=2.260560649.567428250.1677708195-137272517.1677708190
- 9. https://www.25gspon-msa.org/wp-content/uploads/2021/09/25GS-PON-Specification-V2.0.pdf
- 10.https://www.fiberopticshare.com/understanding-split-ratios-splitting-level-optical-splitters.html
- 11.https://avm.de/produkte/fritzbox/fritzbox-5590-fiber/
- 12.https://de.aliexpress.com
- 13.https://www.vecteezy.com/free-vector/vector (Free Vector Graphics)
- 14.https://blog.init7.net/de/p2p-p2mp/
- 15. https://www.bakom.admin.ch/bakom/de/home/das-bakom/medieninformationen/bakom-infomailing/infomailing-56/runder-tisch-zu-glasfasernetzen-vor-10-jahren-erfolgreich-beendet.html
- 16. https://www.swisscom.ch/de/business/wholesale/angebot/anschluesse/BBCS.html
- 17. https://www.parlament.ch/de/ratsbetrieb/amtliches-bulletin/amtliches-bulletin-die-videos?TranscriptId=237179

